

2025

AP[®] Physics C: Mechanics

Free-Response Questions

PHYSICS C: MECHANICS
SECTION II
TIME – 1 HOUR AND 40 MINUTES

Directions:

Section II has 4 questions and lasts 1 hour and 40 minutes.

You may use the available paper for scratch work and planning, but you must write your answers in the free-response booklet. Label parts (e.g., A, B, C) and sub-parts (e.g., i, ii, iii) as needed. Use a pencil or a pen with black or dark blue ink to write your responses.

A calculator is allowed in this section, as well as a ruler and straightedge. You may use a handheld four-function, scientific, or graphing calculator, or the calculator available in this application. Reference information, including lists of equations, can also be accessed in this application and is available throughout the exam.

All final numerical answers should include appropriate units when applicable. Credit for your work depends on demonstrating that you know which physical principles to apply in a particular situation. Credit will be awarded only for work that is clearly designated as the solution to a specific part of a question. Credit also depends on the quality of your solutions and explanations. Therefore, you should show your work for each part in the space provided for that part. If you need more space, be sure to clearly indicate where you continue your work. When constructing a graph or diagram, use only one color of ink or pencil.

You may pace yourself as you answer the questions in this section, or you may use these optional timing recommendations:

It is suggested that you spend about 25 minutes each on Questions 1 and 3, about 30 minutes on Question 2, and about 20 minutes on Question 4.

You can go back and forth between questions in this section until time expires. The clock will turn red when 5 minutes remain—**the proctor will not give you any time updates or warnings**.

Note: This exam was originally administered digitally. It is presented here in a format optimized for teacher and student use in the classroom.

During the AP Exam administration, students have access to reference information. To see the reference information for this course, please visit AP Central:

<https://apcentral.collegeboard.org/courses/ap-physics-c-mechanics/exam>

Question 1: Version J

1. Two blocks, 1 and 2, slide toward each other on a horizontal surface. Block 1 has mass m and slides in the $+x$ -direction with constant speed $2v_0$. Block 2 has mass $6m$ and slides in the $-x$ -direction with constant speed v_0 , as shown in Figure 1. The blocks then collide and stick together. The collision occurs from time $t = 0$ to $t = t_c$. After the collision, where $t > t_c$, the blocks move together with the same constant speed.

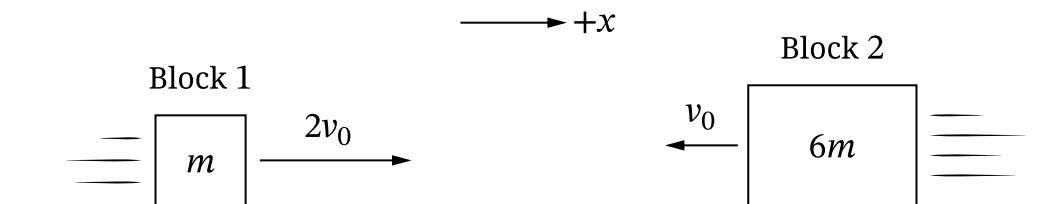


Figure 1

A. The diagrams in Figure 2 can be used to represent the momentum of blocks 1 and 2 before and after the collision. The momentum vector diagram for Block 1 before the collision is shown.

i. Draw arrows on the grids to represent the momentum vectors of Block 2 before the collision and the two-block system before and after the collision.

- Arrows should start at the zero-momentum line.
- The length of the arrows should be proportional to the relative magnitudes of the vectors.
- Represent an arrow of zero length by drawing a dot at zero.

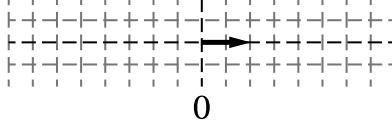
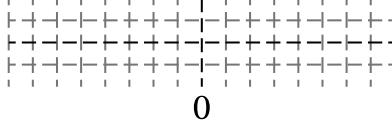
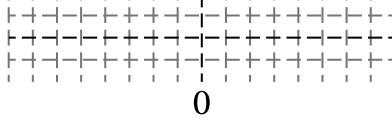
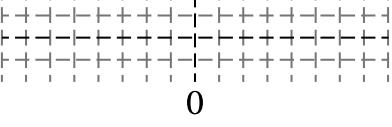




	Momentum Before Collision	Momentum After Collision
Block 1		
Block 2		
Two-Block System		

Figure 2

ii. During the time interval $0 \leq t \leq t_c$, a force F is exerted on Block 2 by Block 1 along the x -direction as a function of t that is modeled by $F(t) = F_{\max} \sin(At)$, where A is a positive constant and F_{\max} is the magnitude of the maximum force exerted on Block 2 by Block 1 during the collision.

Derive an expression for F_{\max} . Express your answer in terms of m , v_0 , A , t_c , and physical constants, as appropriate. Begin your derivation by writing a fundamental physics principle or an equation from the reference information.

B. Consider a new scenario where Block 1 initially slides in the $+x$ -direction with a new constant speed v_1 and Block 2 again initially slides in the $-x$ -direction with constant speed v_0 . The blocks collide and stick together. In this new scenario, the two-block system has constant speed v_0 after the collision.

Derive an expression for v_1 in terms of v_0 . Begin your derivation by writing a fundamental physics principle or an equation from the reference information.

Question 2: Version J

2. In Scenario 1, a system composed of two springs, A and B, and a block of mass m is at rest on a horizontal surface. Friction between the block and the surface is negligible. Each spring is attached to a fixed wall and the block, as shown in Figure 1. Spring A has a spring constant k and Spring B has a spring constant $2k$. Each spring is at its relaxed length when the block is at position $x = 0$, as shown.

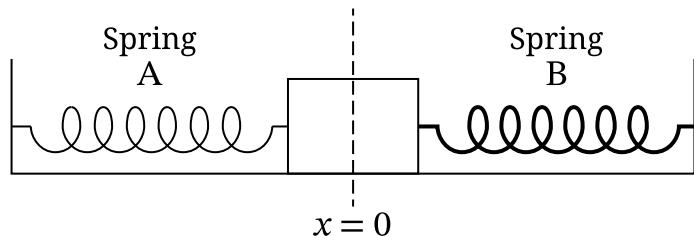


Figure 1

The block is moved to $x = x_1$ and held at rest, as shown in Figure 2.

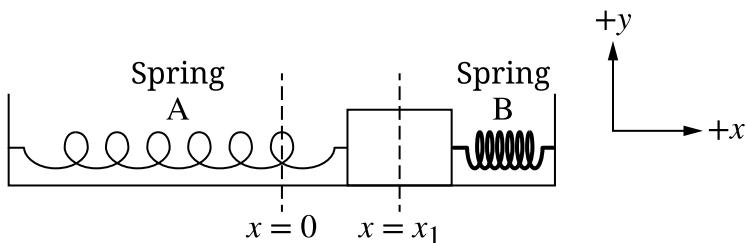


Figure 2

A. An energy bar chart can be used to represent the elastic potential energy U_A of Spring A, the elastic potential energy U_B of Spring B, and the kinetic energy K_{block} of the block. On the energy bar chart in Figure 3, **draw** shaded bars to represent the energy of the system for when the block is at $x = x_1$.

- The height of the shaded bars should be proportional to the relative values of U_A , U_B , and K_{block} .
- Any energy that is equal to zero should be represented by a distinct line on the zero-energy line.

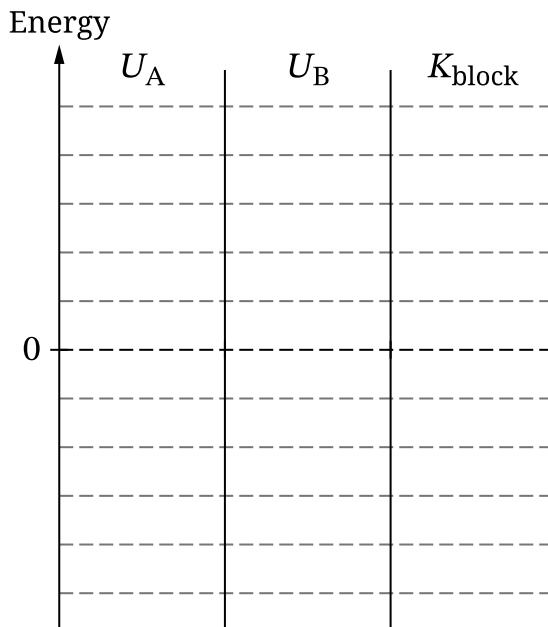
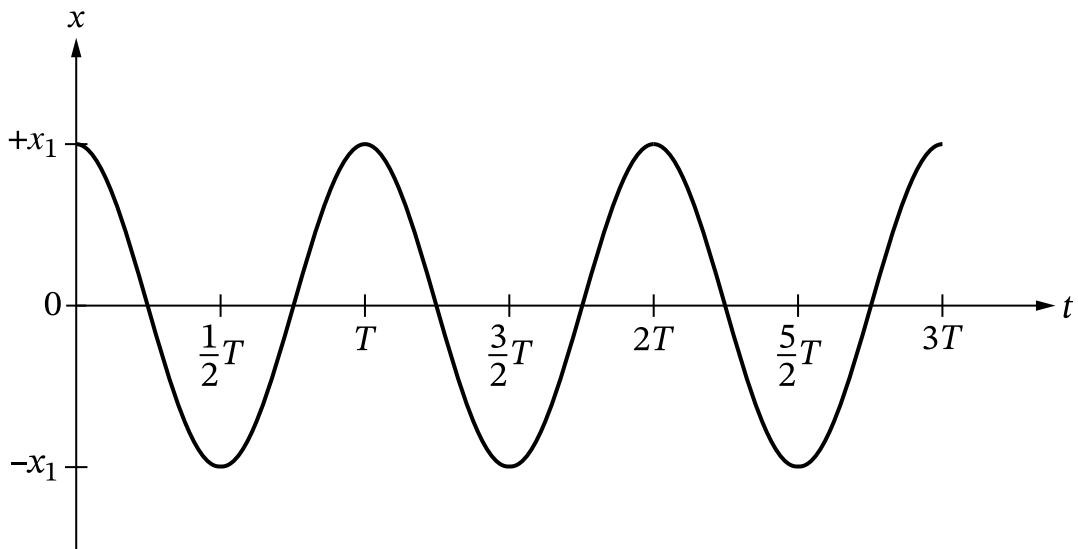



Figure 3

B. The block is released from rest at $x = x_1$ and begins to oscillate. **Derive** an expression for the speed v of the block as the block passes through $x = \frac{1}{2}x_1$. Express your answer in terms of m , k , x_1 , and physical constants, as appropriate. Begin your derivation by writing a fundamental physics principle or an equation from the reference information.

C. In Scenario 1, the block oscillates with period T . The position x of the block in Scenario 1 as a function of time t is shown in Figure 4.

Scenario 1

Figure 4

In Scenario 2, the block-springs system is placed on a new surface. There is friction between the block and the new surface. The block is again moved to the same position $x = x_1$ and released from rest. The block completes multiple oscillations with the same period as in Scenario 1 before coming to rest.

On the axes shown in Figure 5, **sketch** a graph of the kinetic energy K of the block as a function of t for Scenario 2.

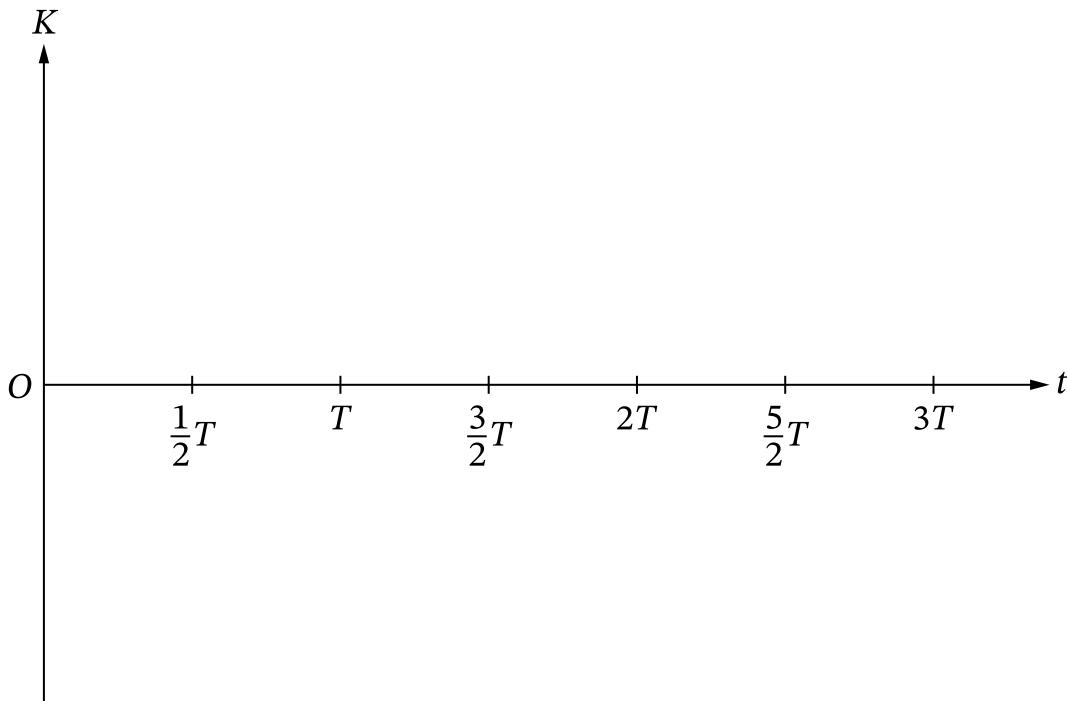


Figure 5

D. In Scenario 3, the block is replaced with a new block of larger mass. The coefficient of kinetic friction between the new block and the surface in Scenario 3 is the same as the coefficient of kinetic friction between the original block and the surface in Scenario 2.

The new block is moved to position $x = x_1$ and released from rest. The kinetic energy of the new block is plotted as a function of time.

Describe how one feature of the graph of K as a function of t in Scenario 3 would differ from the graph you drew in Figure 5 for Scenario 2.

Briefly **justify** your answer.

Question 3

3. A box is connected to one end of a rigid rod. Both the box and the rod have negligible mass. The other end of the rod is connected to a pivot. The box is open on one side, and a block is placed inside the box.

The center of mass of the block is displaced a vertical distance h , as shown in Figure 1. The block-box system is then released from rest and swings downward. There is negligible friction about the pivot. When the system is at the lowest point of its swing, the rod collides with a rigid stopper, as shown in Figure 2. The box comes to rest, and the block is launched horizontally out of the box. The block moves across a horizontal surface toward a motion sensor that measures the speed of the block. All frictional forces are negligible.

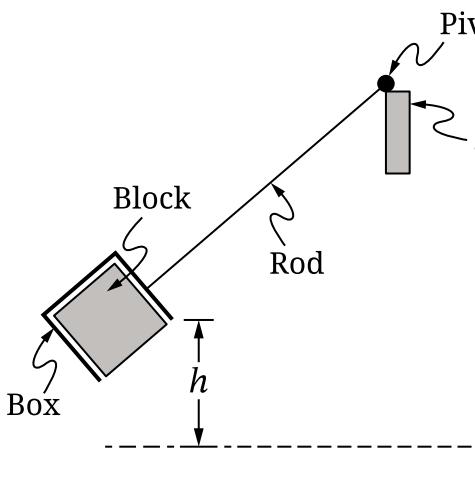


Figure 1

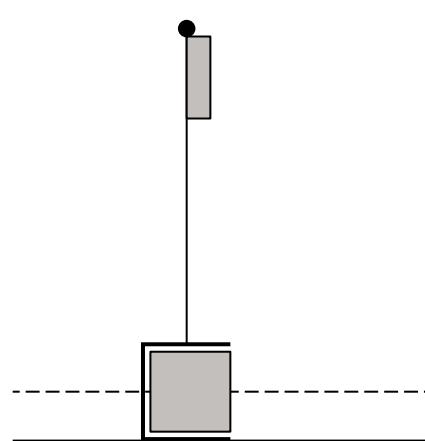


Figure 2

A. Students are asked to experimentally determine the acceleration due to gravity g using a linear graph. To determine g , the students are permitted to use measurements from only a meterstick and the motion sensor.

Describe an experimental procedure using the described setup to collect data that would allow the students to determine an experimental value of g using a linear graph. Include any steps necessary to reduce experimental uncertainty.

B. **Describe** how the data collected in part A could be graphed and how that graph would be analyzed to determine the value of g .

C. The experiment is repeated, but the horizontal surface on which the block slides is replaced with a new rough surface, as shown in Figure 3. The coefficient of kinetic friction between the block and the new surface is μ .

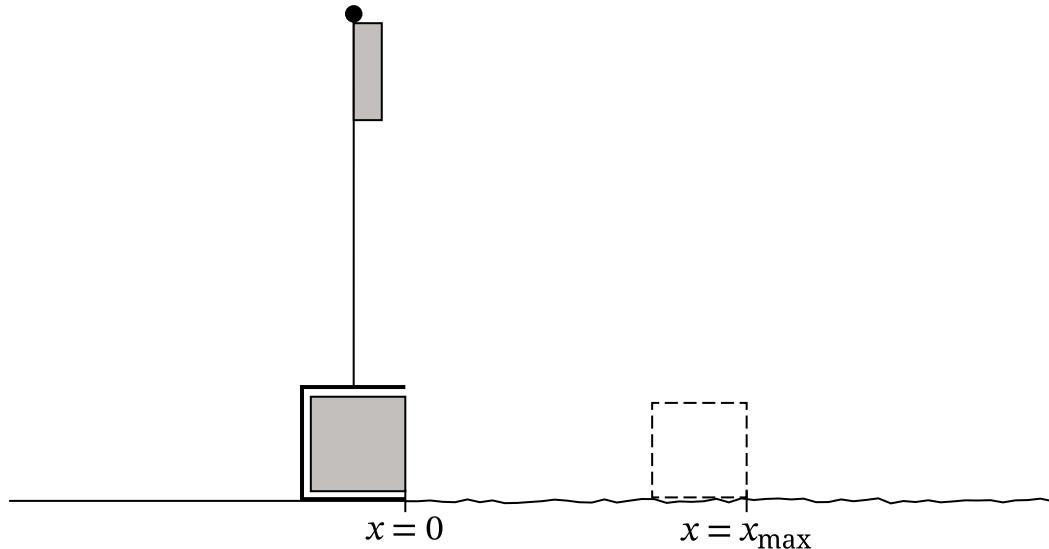
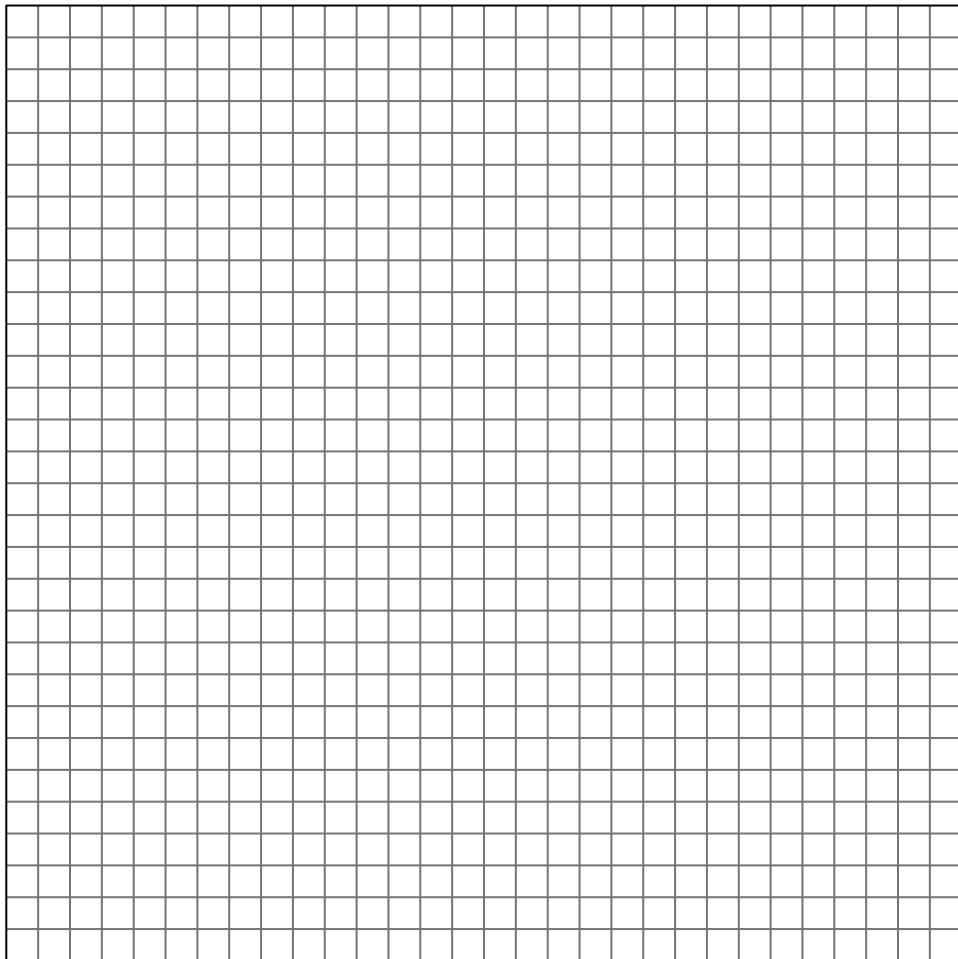


Figure 3

The block-box system is pulled aside so that the center of mass of the block is displaced various vertical distances h and then released from rest. For each vertical distance, students measure the position $x = x_{\max}$ at which the block comes to rest.

The students' measurements of h and x_{\max} are shown in Table 1.

Table 1


h (m)	x_{\max} (m)
0.30	0.76
0.45	1.10
0.60	1.40
0.75	1.90
0.90	2.30

i. **Indicate** two quantities, either measured quantities from Table 1 or additional calculated quantities, that could be graphed to produce a straight line that could be used to determine μ .

Vertical axis: _____ Horizontal axis: _____

ii. On the grid provided, create a graph of the quantities indicated in part C (i).

- Use Table 2 to record the measured or calculated quantities that you will plot.
- Clearly **label** the axes, including units as appropriate.
- **Plot** the points you recorded in Table 2.

iii. **Draw** a best-fit line to the data graphed in part C (ii).

D. Using the best-fit line that you drew in part C (iii), **calculate** an experimental value for μ .

Question 4

4. A uniform disk and ring, each of mass M and radius R , roll without slipping along a horizontal surface, as shown in Figure 1. The outer edges of the disk and ring are made of the same material. The center of mass of the disk and the center of mass of the ring each initially move with the same constant speed v .

The disk and the ring then smoothly transition to a ramp that is inclined at an angle θ above the horizontal. Both the disk and the ring continue to roll without slipping as they move up the ramp, as shown in Figure 2.

The ring travels a greater distance along the ramp than the disk travels before each momentarily comes to rest.

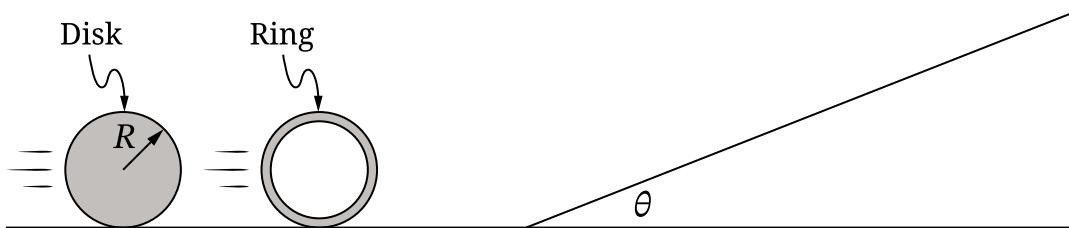


Figure 1

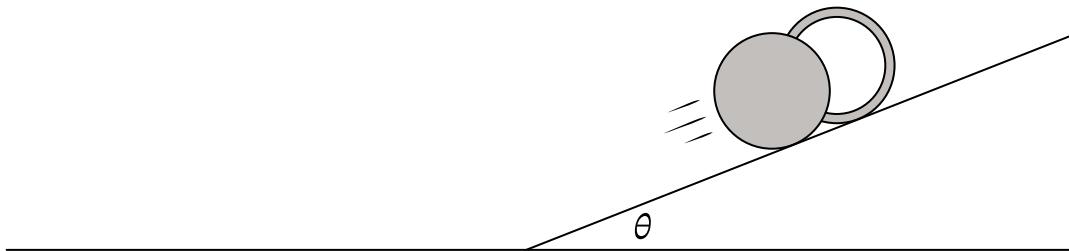


Figure 2

A. While the disk and the ring are rolling on the ramp without slipping, the magnitudes of the static frictional force exerted on the disk and on the ring by the ramp are f_D and f_R , respectively.

Indicate whether f_D is greater than, less than, or equal to f_R by writing one of the following.

- $f_D > f_R$
- $f_D < f_R$
- $f_D = f_R$

Justify your answer using qualitative reasoning beyond referencing equations.

B. A cylinder has mass M , radius R , and rotational inertia I about its central axis. The cylinder rolls without slipping up a ramp that is inclined at an angle θ above the horizontal.

Derive an expression for the magnitude of the static frictional force f exerted on the cylinder by the ramp. Express your answer in terms of M , R , I , θ , and physical constants, as appropriate. Begin your derivation by writing a fundamental physics principle or an equation from the reference information.

C. In a different scenario, the centers of mass of the original disk and ring each have the same initial speed v as they did in the original scenario. The ramp is replaced by a new ramp on which the disk and the ring initially slip as they roll up the new ramp.

Indicate whether the magnitude of the kinetic frictional force exerted on the disk by the new ramp is greater than, less than, or equal to the magnitude of the kinetic frictional force exerted on the ring by the new ramp while both are slipping.

Briefly **justify** your answer.

STOP

END OF EXAM